A Learning Scheme for Generating Expressive Music Performances of Jazz Standards

نویسندگان

  • Rafael Ramirez
  • Amaury Hazan
چکیده

We describe our approach for generating expressive music performances of monophonic Jazz melodies. It consists of three components: (a) a melodic transcription component which extracts a set of acoustic features from monophonic recordings, (b) a machine learning component which induces an expressive transformation model from the set of extracted acoustic features, and (c) a melody synthesis component which generates expressive monophonic output (MIDI or audio) from inexpressive melody descriptions using the induced expressive transformation model. In this paper we concentrate on the machine learning component, in particular, on the learning scheme we use for generating expressive audio from a score.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Expressive Transformations in Saxophone Jazz Performances Using Inductive Machine Learning

In this paper, we describe an approach to learning expressive performance rules from monophonic Jazz standards recordings by a skilled saxophonist. We have first developed a melodic transcription system which extracts a set of acoustic features from the recordings producing a melodic representation of the expressive performance played by the musician. We apply machine learning techniques to thi...

متن کامل

Modeling Embellishment, Timing and Energy Expressive Transformations in Jazz Guitar

 Professional musicians manipulate sound properties such as timing, energy, pitch and timbre in order to add expression to their performances. However, there is little quantitative information about how and in which context this manipulation occurs. This is particularly true in Jazz music where learning to play expressively is mostly acquired intuitively. In this paper we describe a machine le...

متن کامل

Modeling Expressive Music Performance in Jazz

In this paper we describe a machine learning approach to one of the most challenging aspects of computer music: modeling the knowledge applied by a musician when performing a score in order to produce an expressive performance of a piece. We apply machine learning techniques to a set of monophonic recordings of Jazz standards in order to induce both rules and a numeric model for expressive perf...

متن کامل

A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordi...

متن کامل

Evolving Performance Models by Performance Similarity: Beyond Note-to-note Transformations

This paper focuses on expressive music performance modeling. We induce a population of score-driven performance models using a database of annotated performances extracted from saxophone acoustic recordings of jazz standards. In addition to note-to-note timing transformations that are invariably introduced in human renditions, more extensive alterations that lead to insertions and deletions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005